Node Density and Quality of Estimation for Infrastructure-based Indoor Geolocation Using Time of Arrival
نویسنده
چکیده
Infrastructure-based indoor geolocation systems utilizing a regular grid arrangement of sensors are being investigated for many applications in indoor wireless networks. One of the factors affecting the Quality of Estimation (i.e. location estimation accuracy) of these systems is node density. In this dissertation we study the effects of node density on indoor geolocation systems based on time of arrival (TOA). The effects of node density on the performance of various indoor communication networks (e.g. wireless LANs) in the presence of realistic indoor radio propagation models has been analyzed and reported in the literature. However, we have noted the lack of an equivalent analysis on the effects of node density on the performance of infrastructure-based indoor geolocation systems. The goal of this dissertation is to address this knowledge gap. Due to the complicated behavior of the indoor radio channel, the relationship between the node density and Quality of Estimation (QoE) is not straightforward. Specifically, QoE depends on factors such as the bandwidth used to make the TOA-based distance measurements, the existence of undetected direct path (UDP) conditions, and coverage. In this dissertation, we characterize these dependencies. We begin by characterizing the Quality of Estimation for closest-neighbor (CN), least-squares (LS) and weighted LS techniques in the presence of different node densities and a distance measurement error (DME) model based on ray tracing (RT) that was recently proposed in the literature. Then, we propose a new indoor geolocation algorithm, Closest Neighbor with TOA Grid (CN-TOAG), characterize its performance ii and show that it outperforms the existing techniques. We also propose an extension to this algorithm, known as Coverage Map Search (CMS) that allows it to be used in suboptimal coverage conditions (which we refer to as partial coverage conditions) that may prevent other TOA-based geolocation techniques from being used. We treat the partial coverage case by defining coverage probabilities and relating them to the average radius of coverage and dimensions of the indoor area. Next, we characterize the effects of node density on the performance of the CN-TOAG algorithm using a DME model based on UWB measurements, and show that node density and partial coverage are intimately linked together. Since this second DME model also allows for the effects of UDP conditions (which affect the quality of the link or QoL), we also characterize the effects of varying UDP conditions on the performance. Finally, we conclude the dissertation by presenting an analysis of …
منابع مشابه
Multiple Subcarrier Indoor Geolocation System in MIMO-OFDM WLAN APs Structure
This report aims to utilize existing and future Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing Wireless Local Area Network (MIMO-OFDM WLAN) systems characteristics—such as multiple subcarriers, multiple antennas, and channel estimation characteristics—for indoor location estimation systems based on the Direction of Arrival (DOA) and Radio Signal Strength Indication (R...
متن کاملModeling the Behavior of Multipath Components Pertinent to Indoor Geolocation
Recently, a number of empirical models have been introduced in the literature for the behavior of direct path used in the design of algorithms for RF based indoor geolocation. Frequent absence of direct path has been a major burden on the performance of these algorithms directing researchers to discover algorithms using multipath diversity. However, there is no reliable model for the behavior o...
متن کاملModified RWGH and Positive Noise Mitigation Schemes for TOA Geolocation in Indoor Multi-hop Wireless Networks
Time of arrival (TOA) based geolocation schemes for indoor multi-hop environment are investigated and compared to some of conventional geolocation schemes such as least squares (LS) or residual weighting (RWGH). The multi-hop ranging involves positive multi-hop noise as well as non-line of sight (NLOS) and Gaussian measurement noise, so that it is more prone to ranging error than one-hop range....
متن کاملUsing UWB Measurements for Statistical Analysis of the Ranging Error in Indoor Multipath Environment
In this paper we use UWB measurements for bandwidths up to 3GHz to present a framework for statistical modeling of the indoor radio channel propagation characteristics that are pertinent to precise indoor geolocation using time-of-arrival (TOA) estimations. Accuracy of indoor geolocation systems relies on the strength and TOA of the direct path (DP) in the channel profile. Based on UWB measurem...
متن کامل